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ON THE STABILITY OF VORTEX MOTIONS
IN THE PRESENCE OF MAGNETIC FIELDS

INTRODUCTION

In an important paper on the hydrodynamic and hydromagnetic stability of nondissipative swirling

flows, Howard & Gupta (1962) presented many interesting aspects on stability characteristics of vortex

motion with and without axial velocity. Even though they restricted themselves mostly to homogene-

ous fluids subject to axisymmetric perturbations, their generalization of the Richardson criterion and of

the semi-circle theorem to axisymmetric steady flows presented a relatively simple insight into the type

of parallel flows complicated by the cylindrical geometry. Acheson (1972, 1973) later extended the ana-

lyses into the same type of flows subject to non-axisymmetric perturbations. A review paper on this

subject was given by Acheson & Hide (1973).

By considering a homogeneous fluid rotating uniformly in a radius-dependent magnetic field,

Acheson (1972) derived some sufficient conditions for stability of the flow. The difference between the

axisymmetric and nonaxisymmetric modes were brought out by assuming the wavelengths in the radial

direction to be small compared with the radius. In addition, the stability phenomenon that all non-
'I

axisymmetric unstable waves must propagate against the basic rotation, i.e., the westward drift, was

proved to prevail with a restriction on the axial and azimuthal components of the magnetic field. With

the help of the Boussinesq approximation, the author later (Acheson 1973) generalized the westward

drift phenomenon to heterogeneous fluids rotating differentially. Also based on this westward drift, a

quadrant theorem reminiscent of the semi-circle theorem encountered in two-dimensional stratified

flows was derived for slow amplifying waves.

It should be emphasized, as also noted explicitly by Acheson (1973), that the results obtained in

his paper are restricted to perturbations with non-zero axial wave numbers. Any attempt to infer that

Manuacript approved October 12, 1982.
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the results can be applied to perturbations with zero axial wave numbers (azimuthal modes) may lead

to incorrect conclusions on both the hydrodynamic and hydromagnetic problems. This argument will

be demonstrated by examinin the azimuthal modes in this paper.

In the present investigation, stability analyses are performed on a general type of vortex flow with

varying density in the presence of an axial and an azimuthal magnetic field. A sufficiency condition for

stability is derived and compared with the results obtained from other methods. The dual role played

by the rotating velocity on the stability of vortex motions is separated and revealed by proper transfor-

mations. While the shear effect conveyed by the velocity gradient at the shear layer always destabilizes

the flow, the centrifugal force generated by the fluid rotation stabilizes or destabilizes the flow depend-

ing on whether or not the density increases radially outwards.

For vortex motions subject to azimuthal disturbances, a magnetic field always has a stabilizing

effect regardless of its detailed distribution. As an extension of the semi-ellipse theorem in stratified

rotating flows (Fung 1982), an upper bound on azimuthal amplifying waves is derived with a restriction.

The restriction suggests that the semi-circle in the complex velocity plane does not provide a bound on

all the growing azimuthal modes. Furthermore, the upper bound demonstrates that unstable waves do

not necessarily drift westward for the hydromagnetic or non-hydromagnetic case. For uniformly rotat-

ing flows with constant angular Alf'en velocities, all azimuthal unstable waves must lie on a semi-circle

independent of the density distributions. Exact solutions for some special flow profiles are obtained to

support the derived stability criteria.

MATHEMATICAL DERIVATION

Consider a vortex flow with a velocity V and a magnetic field R to be confined within the annular

region (r, 9, z) between two rigid, infinite and coaxial cylinders. The fluid having an inhomogeneous

density p* is assumed to be inviacid, incompressible, and non-heat-conducting. When gravitational

forces and dissipation effects due to viscosity, magnetic resistivity, and thermalid diffusivity re neglected,

the governing equations for the flow are
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v - 0 (2)

S (x ) (3)
Ot

' • R -0 o(4)

Dt

where 1 denotes the magnetic permeability. The total pressure Q (including the magnetic pressure) is

related to the hydrodynamic pressure P as follows:

Q - e + __ IIW. (6)

The boundary conditions for the system governed by Eqs. (1) to (5) are those of perfectly conducting

rigid walls.

The flow to be considered has a steady-state, radius-dependent profile as follows: fl (r) is the

angular velocity, W(r) the axial velocity, Hp(r) the azimuthal magnetic field, H(r) the axial magnetic

field, Qo(r) the total pressure, and po(r) the density. Let the flow be perturbed as follows:

M r 0 Wr r + o W(r) + i 1,
Ff (ii, H9 rW + 4,f. W/(, + &L.

Q - Qo(r) + 4,
p . po(r) + . (7)

We further introduce the periodic solutions

- (r) Exp [i(kz + mO - t) (8)

such that the azimuthal wave number m is an integer, the axial wave number k is real and positive, and

the circular frequency w - w, + iw is complex. Within the framework of the normal mode method,

the linearized equations for the flow described by Eqs. (1) to (5), subject to small perturbations, are

given as follows:

Po [iNu - 2 lv]- .L [IVeh,- h.] - rlp - -Dq (9)4'i r

Po [INv + D(rO)uI - -- [N.ho + D-(Ho)/,] - -I q (10)

P[ UNw + (DW) u - W [INh, + (DHf)h,] - -ikq (1)

3
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Du +1 v + ijm0(12)

Nh, - N~u - 0 (13)

th - D. WOfl h, - [iNv-D. (IfeWu-m-HoID'u + I !.v +c (14)

Wkh - (DW) h, - fiN~w - (DIH) uJ - -H, ID~u + i v + kJ(15)

D'h, + i h# + khz - 0 (16)

iNp + (Dpo) u - 0 (17)

where N -kW + mil - wi is the Doppler-shifted frequency, N. = kHz + m -, D - - D
r d,'

+ I and D. - D - -. The characteristic that Eqs. (3) and (4) represent only three independent par-
rr

tial differential equations, under the present assumption, is reflected in Eqs. (13) to (16).

If we define the angular and axial Alfvdn velocities as

A -f 4wpo r A -=vp H..~
and the Alfvdn frequency as

NA - k WA + M f'A.

Eqs. (9) to (17) can be combined into two independent differential equations as follows:

2 +A
±A D -1 NA'OA 11 02

, INJ N N (I N, Po N2

I AV2

IA N 01 (19)n A

D ~~ III~2Q2

40 D [pofl)J.1 POP
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The equation governing stability of the flow can be obtained by combining Eqs. (18) and (19) as fol-

lows:

D fpoE(N2-N2)D -- ID. (2mpoE (N O - N
A

)

+I N2 -N2 - + + 4l2 4 E (NO - NlA ) 2

+PA N2  N - o (20)

where

N (21)

and

r 
2

E-
E- 2 + 2 r2"

The boundary conditions for the above equation are

*(rt) - *(r2) - 0 (22)

where r, and r2 are locations of the solid boundaries. If discontinuities in the flow profile exist within

the flow domain, the matching conditions obtained by integrating Eqs. (18) and (19) across the discon-

tinuity surface are

<--) - 0 (23)
N

<>- i~l<por(0 - n2)> . 0 (24)

N A

where <#> - O(R+O) - 0(R-0) represents the jump condition across the discontinuity surface at

r - R.

STABILITY CRITERIA

We will investigate the general stability characteristics described by Eq. (20). Due to the com-

plexity of the presence of all the four components in the velocity and magnetic fields, general stability

criteria only in terms of the flow profiles are difficult to derive. However, stability conditions for some

particular cases can still be observed and discussed in the following.
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(1) SNAlt ComditIs for Stamlty

Let

, IV-V2I (25)
Equation (20) is then transformed to

+04oEN - ±4JDkJ-rD I-[DN 11 ±.. -!+2f (NO -NA()A)I

Multiplying the above equation by r4., where the quantity with a bar stands for the complex conjugate,

and integrating the resultant equation over the flow domain, we obtain- ~ Pj2 - N2

+f1__L poE(DN)2 I AI 2mpoEDN

No 7t 2 (Nil-NAA)

PO [ - NA-O+ A 4n2 f- 40E (Nn I I~ Ir& 0 (27)

with its imaginary pan equal to
Nlf po(-,Di + i.12)rdr +f o{NDr,

+Nf2~o 4 (W+mO-i)ND1l- n,,)dr

IN , -±A-1 + IN- N4 1- IPjl 12d

N2 -[A

Jith Nts im.... .o
&Ifp(l 2.o1 +J 1012)r r O (23)I

!. "+ INI 2mlA + , (kW + - 2 NADN

r r -



Since the first three integrals are all positive definite, no solution corresponding to w, d 0 exists if the

sum of the quantities in the last integral in Eq. k28) is positive. Therefore we can conclude that the

flow is stable if

S- * A - 4(fW + fa ) + (kW + MflA)

r2 (kDW+mDfl) 2mfl kDW+mDfl 1+ (kWA+mflA) 1
M2 + kr 2  r 4 IkW"mfl- 2 >+ m0 (29)

anywhere within the flow domain. Equation (29) can be rearranged to

(1 + s')( - *A - 4fl' + NA) - 4(30)NA N 2 4

[DW + s(rDfl + 4fl)12 + [(DW + srDfl)-TNI

where s - m/kr. It can be seen immediately that Eq. (30) will be violated when

'0- *A - 4 2 + N 4 2/(1 + s 2). (31)

Equation (30) is reminiscent of the stability criterion obtained by Fung & Kurzweg (1975) in their

study on the stability of swirling flows with radius-dependent density. Like the role played by the

Rayleigh-Synge criterion (a condition for centrifugal stability) in their stability criterion, Eq. (31) can be

viewed as a precondition to the sufficiency criterion in Eq. (30). However, this sufficiency criterion for

zero magnetic forces does not reduce to the one obtained by Fung & Kurzweg (1975). This is a well-

known paradox stemming from the fact that the lines of magnetic flux for a fluid with zero resistivity

are permanently attached to the fluid (Chandrasekhar 1961). The attachment is contained in the

second and the third integral of Eq. (28). If we assume

NA - kWA + mrnA -0 (32)

throughout the flow domain, Eq. (28) can be written as

ij, jfpO(EID*OI2 + 1012) rdr))

PO 12+13+ -4A-4(fl2+ n )  -0. (33)
r r 4

The positive definite integrands

12 m2 + A (34)

7
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i1
and

4kr (fl+ a,) (35)13 - + a D,,35

which were originally not admitted in the sufficiency condition obtained from the second and third

integral in Eq. (28), are now recovered. The resultant condition for stability now reads
(I + s2)  A) (36)

[DW + s(rDf + 4fl) 2  (

Note that Eq. (36) is valid only with the constraint described by Eq. (32). It is remarkable that even

though the constraint involves the magnetic forces in both the axial and azimuthal direction, the

sufficiency condition described in Eq. (36) does not depend on the axial magnetic forces. Furthermore,

if we compare the numerator in Eq. (30) with that in Eq. (36), a destabilizing term

-4[al 2 + (1 + S2)f.21 appearing in the former disappears in the latter as NA approaches zero. Though

this paradox suggests a destabilization of the flow by the magnetic forces, one should keep in mind that

both the sufficiency conditions in Eqs. (30) and (36) only represent a bound on stability and are by no

means to give the final stability conditions.

Since the sufficiency condition for stability obtained in Eq. (29) or (30) contains the unknown fre-

quency (a, a more general view of flow characteristics in terms of given flow profiles is therefore

difficult to see. In the following we will further examine the flow characteristics using other methods

and compare the results with the derived sufficiency conditions for some particular cases.

(2) Comparisons with Different Modes

Three different types of perturbations are to be examined and compared with the earlier obtained

sufficiency condition.

A. Axisymmetric modes (m - 0)

For simplicity, we will neglect the axial magnetic flux, i.e., W4 - 0 throughout the flow domain.

Equation (20) under the present conditions reads

D [p(W - ck) 2D"t$] - po k2(W - ck) - +  4]- 0 (37)

8



where

Ck - - Ck, + 'Ci,

is the axial phase velocity. The constraint in Eq. (32) is now satisfied and the loss of the stabilizing

effect by the presence of the axial magnetic flux is recovered. The sufficient condition for stability

reduced from Eq. (36) becomes

Jk >(38)
4

where

4- 'PA (39)J (D W)2

which is reminiscent of the Richardson number in two-dimensional stratified flows. Condition (38) was

first derived by Howard & Gupta (1962) for homogeneous fluids. In the absence of axial flows, Eq.

(37) together with the boundary conditions forms a Sturm Liouville system for which

D - i. 4 >' 0 (40)

is a necessary and sufficient condition for stability. The above condition was first derived by Michael

(1954) for homogeneous fluids and will be called the generalized Michael condition. An alternative

way to examine the influence of flow quantities on stability can be obtained as follows.

Multiplying Eq. (37) by ru and integrating the resulting equation throughout the flow domain, we

obtain

f (W- C0)2 Xdr -f po( - I'A) 141 rdr -0 (41)

where

Xk PO (ID*#12 + k21q*,)r ;0 0.

Solving Eq. (38) for Ck results in

f WXkdr V x f 0 ($ - ')'0 *A) - 8 (42)SCk- ''X# (42)
fXkdr

where

k- f Xkdrf W2Xkdr- (f WXkd)2 0 0

9
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for all values of W resulting from the Schwarz inequality. It follows from Eq. (42) that instability of

the flow is expected when

-8k + fXkdffPo (0' - *A) kbl2rdr<O. (43)

It is obvious from the above equation that the axial velocity always destabilizes the flow except for con-

stant W where 8 k - 0. The second term in Eq. (43) represents the contribution from the Rayleigh-

Synge and the Alf en discriminants. Instability will occur when the generalized Michael condition is

violated. It is interesting to note that even though both Eqs. (38) and (43) involve similar arguments

on the axial velocity and on the generalized Michael condition, they represent different bounds on flow

stability. It is obvious from Eq. (43) that violating the generalized Michael condition automatically

leads to instability of the flow. However, such a conclusion can not be drawn directly from Eq. (38)

since violating the sufficiency condition does not necessary lead to instability.

B. Azimuthal modes (k - 0)

The sufficiency condition for k - 0 reduced from Eq. (29) reads

J .. 1 (4 4 )
I + fj( - c(a ,)2  (4

J. .- rfl2Dpo - rD(pol 2) + (M2 - 4)p0l (
po(rDfl )' (

where

c - - C" + icmiin

and is the angular phase velocity. An analogy can be drawn between the two sufficiency conditions in

Eqs. (38) and (44) except in the latter the shear effect is produced by the angular velocity rather than

the axial velocity. Equation (44) suggests that the angular velocity plays a dual role in flow stability:

the angular velocity itself stabilizes the flow while its gradient destabilizes the flow. This characteristic

can further be observed in the following analysis. The influence of the azimuthal magnetic field on

flow stability is difficult to see because the sufficiency condition involves the complex phase velocity.

An alternative way to examine the flow characteristics is given as follows.

10
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Equation (20) for k - 0 is written as

Dipo,2 (N2 - m~n ')DO*]
- {2mrD~p0(N0 - mn )] + pom2 (N 2 - 0 + 4n"2 + 'A - m2 fl2)) -0. (46)

Here

N- mfl - W.
Multiplying Eq. (46) by r, and integrating the resultant equation yield

f (N 2 - m2fl2) X~,dr + f (2mrND(pofl) - M 2 [rl 2(Dpo) + rD(pofl2)J)r I*12r - 0 (47)

where

Xm - po(r 2 ID'Vqo 2 + m2 Iiq, 2)r > 0. (48)
Further we utilize the transform

Y, - po[r2 lD*12 + (M2 - 1)lI12]r > 0 (49)
Eq. (47) can be reduced to a simple quadratic form of the complex azimuthal phase velocity cm

c.2f Xmdr- 2cmf 'lYmdr + f (fl2 fl)Ymdr _ O. (50)
Solving (50) for c. leads us to a conclusion that the flow will be unstable (corresponding to Cj ;d 0)

when

-8. + f (Dpo) 2 ,bl2drf 112y dr + f X.drf a f .dr < 0 (51)

where

8.m.fymdrf fl2ymdr -(f a ymdf) 2 > 0

for all values of ni resulting from the Schwarz inequality. The first term of Eq. (51) represents the

shear effect produced by the angular velocity gradient. It is obvious that this term always destabilizes

the flow except for uniform rotation where 8. - 0. Instability in this case is of centrifugal origin

because of the absence of shear layers within the flow domain. The second term (51) represents the

density variation within the centrifugal force field produced by the rotation of fluid. Positive density

gradients stabilize the flow. In the absence of magnetic fields, instability automatically occurs when the

density decreases radially outwards regardless of the detailed profile of the angular velocity. Even

though it is also suggested by Eq. (44) that negative density gradients may lead to the violation of the

sufficient condition for stability, instability, however, can not be concluded. Violating Eq. (44) does

I!



not necessarily lead to instability. The last term in Eq. (51) represents th. magnetic influence on flow

stability. The presence of the azimuthal magnetic force, regardless of its detailed distribution, always

stabilizes the azimuthal disturbances. This argument, which cannot be seen clearly from criterion (44),

wll' supported by an analytical solution to the governing stability equation. Another conclusion we

can draw from Eq. (51) is that for uniform rotation flow stability can be guaranteed if the density

increases radially outwards. This characteristic is also independent of the profile of the magnetic field

and cannot be observed from Eq. (44).

C. Arbitrary modes

Because of the complexity of the arbitrary perturbations, we will ignore the influence from the

magnetic field and concentrate on the contribution from the density and velocities of the flow. Under

these conditions, the constraint in Eq. (32) is satisfied and, without losing the the stabilizing effect, the

sufficient condition for stability reduced from Eq. (36) reads

(1 + s) (D 1 (52)
(DW + s(rDil + 4) 12

This condition was first derived by Fung & Kurzweg (1975) in their study on heterogeneous swirling

flows. Readers are referred to their detailed discussions on the condition. Reminiscent of the statically

stable condition for density encountered in two-dimensional shear flows, the Rayleigh-Synge criterion

(0 0) acts as a condition for centrifugal stabilities.

In the following, we will further investigate the stability characteristics by adopting the method

used in the axisymmetric and the azimuthal cases. The integral equation thus obtained is

poD('2 r2  4mw ~l..
fNZXdr - 2f moN --;, - dr-f fpelqir*l 0 (53)

where

X- po( r2  ID°12 + 1.12 r ) 0. (4)

12
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We further utilize

po [r2 lDqoI2 + (k2 r2 + m2 - 1)112 r  0. (5)

m2 + kr 2

Equation (53) is transformed to. a simple quadratic form of wi

W'f Xdr - 2,if (kWX + mfl Y)dr + f (k1 W2X + 2kWmflY + m2O2Y)d,

[.~ 2m2fl2] k2r2-PO 0+m2 +k2rl 2 2+ k1. r2 r 0 (6

Instabilities are expected whenever

-- w- 8n - 8, - 8f +fw (Dp0) r2l1+ 12 drf m22ydr
,Xd,'rjo2 +k2r2

+ f dr P(,b 22r2 r2I*I2rdr < 0. (7+ +

Here

8w- f Xdrf k2WXdr - (f kwXdr)2
8u -f Ydr f m2 fl2Ydr - (f mfl Ydr)2

8- 2(f Xdrf kWmflYdr - f kWXdrf mflYdr)

8f - 2 m2l2ydrf (2 k k2 )2 po1*I 2rdr - f xdf M + k2r,'2 po1#12 "

Since X and Y are positive definite, it follows from the Schwarz inequality that both 8 w and 8n are

positive definite for all values of Wand fi, representing the shear effects conveyed by the gradients of

the axial and tangential velocities. As also implied by condition (52) they both destabilize the flow

except for constant axial and angular velocities where 8 w - 8n - 0. The third and fourth terms are

respectively the influence of the perturbation directions on the shear effect produced by the velocities

and on the centrifugal force created by the fluid rotation. Both can be either positive or negative,

implying that they can either stabilize or destabilize the flow. This stabilization or destabilization will

not be seen until solutions to the governing stability equation are obtained. The fifth term in (57) is

the effect of density variations in the centrifugal force field. Positive density gradients stabilize the

flow. The last term in (57) involves the Rayleigh-Synge discriminant and stabilizes the flow if the

Rayleigh-Synoe criterion (0 ) 0) is satisfied. Condition (57) can reduce to condition (43) for the

axisymmetric case and to condition (51) for the azimuthal case if the magnetic fields are deleted.

13



(3) Bounds on Unstable Waves

For instability, a bound on the growth rate can readily be obtained from Eq. (28). Since the first

three integrals in the equation are all positive definite, it follows, as an opposite to the sufficiency con-

dition for stability in Eq. (29), that the integrand in the last integral must be negative somewhere

within the flow domain. This leads to a bound on the growth rate such that

+ ( N2(DW + srD)2 L
(di < 41(0 + As *A -)41l + _NA,) 42 1 - [DW + s(rDil + 411)12

The above bound will be meaningless for those profiles satisfying NA - 0. A bound for those cases can

also be obtained from Eq. (33) and the growth rate is then bounded by

i2 < [DW + s(rDO + 4fl)]2 -(0- '*) (59)
4(1+ s2)

In the following we will further investigate upper bounds for possible unstable waves and compare

them with the stability characteristics previously obtained. Three special cases will be discussed.

A. The axisymmetric case (m - 0)

For mathematical simplicity in this case, we further ignore the axial magnetic field, i.e., WA - 0.

The integral equation for the present case, reduced from Eq. (28), becomes

f p0 (iD°1 2 + k2 I1I2)rdr + f pok A - (D W)2 I - 0 (60)

as the governing relation for possible instabilities. From Eqs. (20), (25) and (60) we follow the pro-

cedures used by Kochar & Jain (1979) in their derivation of the semi-ellipse theorem in two-

dimensional stratified flows to obtain

..c+ 2 + 11 +Wmi+J/f 4( ) n 1 c'Wm ,2W ij 2  (61)

where .4 as given in Eq. (39) is restricted to be less than 1/4 if Eq. (61) is valid. The subscripts max

and min represent the maximum and minimum of the quantities within the flow domain. The semi-

ellipse theorem for the axisymmetric case thus states that the unstable axial phase velocity must lie

14
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within a semi-ellipse in the complex phase velocity plane as described by Eq. (61). The semi-ellipse is

bounded by the upper and lower limits of the axial flow velocity and is exactly the same the one in

two-dimensional stratified flow except that the local Richardson number is defined as in Eq. (39)

instead.

B. The azimuthal case (k - 0)

By using the Boussinesq approximation, Acheson (1973) was able to demonstrate the westward

drift phenomenon in his study on hydromagnetic wavelike instabilities in a rapidly rotating stratified

fluid. In addition, a quadrant theorem reminiscent of the semi-circle theorem in two-dimensional

stratified flows was also derived for slow amplifying waves. Even though his criteria were obtained for

nonaxisymmetric modes under certain assumptions, any attempt to infer that the azimuthal modes carry

the same characteristics as the nonaxiymmetric ones is, at best, uncertain. In the present case, we will

investigate this uncertainty. The procedure to be used to construct the bound for instabilities is similar

to the one used by Fung (1982) in his study of nonaxisymmetric instability on rotating flows except

that the present case is complicated by the magnetic field.

From the derivation of the sufficiency condition for stability, the integral equation of unstable

waves for k - 0 reduced from Eq. (28) is written as

f p0(r2 DlojI2 + m2IJ12)rdr

P "IDIi- + I rrmrD (fl-w,)

+ II4Pr(Dfl)1 12rdr -0 . (62)

Substituting Eq. (25) into (62) and applying the Schwarz inequality lead to the inequality

* f 1d4(TI~l+ I f , (Dn)2 poI 2 (3*.

Next we separate the real and imainary parts of Eq. (50) for instability into

1 f (f 2 -2€..f- 0 2) Ymdr + (U2 -cDf Xdr 0- (64)
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and

f l~rc X~r . (65)f nY.d, - c.fx. -0(
Let fl =x be the upper bound and fl mj be the lower bound of the angular velocity within the flow

field. Because

(fl -m,)(flflm ) Ydr < 0 (66)

incorporating Eqs. (64) and (65) into (66) yields

(C,'. + c2W - (n + 0.1. c, + fl..Axn + (fnA)kmi, fxndr

+ f [In ,nj. (Dpo) + D(poflAIr2I* I,r < 0. (67)
Equation (67) implies that the complex angular phase velocity will no longer be bounded by a semi-

circle if 0= ,fl m 1 DpO + D (poAl) < 0. This characteristic will be demonstrated by an analytical solu-

tion to the stability equation to be given in the next section. To construct a bound for possible unstable

waves, we assume that

ttmL.O.Dpo + D(poil) 0 0 (68)
and combine Eq. (63) and (67) to obtain

4 fll Dp + rD(pofl AI

fc,,vw flmax'flmin 2+ !+ ipo(rDfl) 2  2

+ +)m ia4(112

CI
2 A~f~J f~ (69)

Thus the complex angular phase velocity for unstable waves will be bounded by a curve described in

Eq. (69). Another conclusion we can directly draw from Eq. (69) is that stabilities will occur if the

minimum absolute value of the angular Aifvdn velocity exceeds half of the maximum angular velocity

difference, i.e.,

f"Im )0 (n - n ,). (70)
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One should keep in mind that both criteria, Eq. (69) and Eq. (70), are valid only with the restriction

given in Eq. (68). The bound described by Eq. (69) depends not only on the density but also on the

upper and lower bounds of the angular velocity and of the Alfv6n waves. The bound in Eq. (69)

reduces to the semi-ellipse theorem derived by Fung (1982) should the azimuthal magnetic field be

deleted from the flow. The bound in Eq. (69) also indicates that the amplifying waves do not neces-

sarily propagate against the basic rotation. Accordingly, the westward drift that exists in the arbitrary

amplifying modes does not prevail in the azimuthal case.

C. Uniform rotation and constant angular Alfvn wave

A solution for azimuthal modes described by a semi-circle can be derived for all unstable waves of

the flow with uniform rotation and constant angular Alfvdn velocity regardless of the particular form of

the density distribution. For 0) - l0 and 0 A - flA0, Eq. (46) under the present assumption yields a

simple form

D(per2D*u) - [Ar(Dpo) + m2poiu - 0 (71)

where

A-A,+iAj- I ( n-.f g  (72)

and

A,- 1- )[(no l- )2 n 2o c21 [(no -c.) 2 - a2 0 -c2J

+ 4flo (no - cW,) CM)

A,- C- no 1 1 1
A1  I~n~ -C.)

2 - n 2CFf~f 0

Equation (71) and the conditions that u vanishes at the inner and outer boundaries form a Sturm-

Louiville system having the following characteristics: (1) A is always real indicating A, - 0, and (2) A

and Dpo are of opposite signs. These characteristic can also be shown by applying the integral method

to Eq. (71) or directly obtained from Eq. (50) under the present assumptions. The first characteristic

states that the complex angular phase velocity for all unstable waves must lie on a semi-circle described

by

17
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EJ 1 _ -J_ (73)

and since

A- A, i~n0z-c )- j12012 x- o(4

must hold for all unstable waves, the second characterisitic clearly demonstrates that instabilities are

impossible when Dpo 0 0. As a matter of fact this conclusion can also be drawn directly from Eq. (51)

even for arbitrary angular Alfvdn velocity. Instabilities of this type are certainly of centrifugal origin

since no shear layers exist within the flow field. In the absence of the azimuthal magnetic force, the

present semi-circle for unstable waves reduces to the one obtained by Fung (1982) in his analysis on

nonaxisymmetric instability of vortex flows. Once again, the unstable waves do not propagate against

the basic rotation unless flo> lJ.

SOME EXACT SOLUTIONS

To demonstrate the validity of the sufficiency condition for stability and of the bounds for

unstable waves, we proceed to construct several flow profiles and obtain exact solutions to the govern-

ing stability equation. Three types of vortex flows will be considered.

(1) Uniform Rotation

First consider a flow profile with the distribution as follows:

(r)- fl 2 (1 A(r)- flA2
W(r) W2 WA(r) - WA2. (75)
pO(r) - p2(r/R)f

Here R. a- and all the quantities with the subscript 2 are arbitrary constants. The perturbation velocity

in the radial direction obtained by solving Eq. (20) is

1 2  2r 11 N - Nr - -IA + 2m(N 2(12 - NA2( A2) + k '(kr) (

+(N 2  - NA 2 A) + APg(k(kar)[ )|!(

12 I*. - (-2
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with the corresponding perturbation pressure equal to

q- -i(N? - Nt 2)9gP2 ( rT IAI,(kgr) + BK,(kgr)I (77)

where

2q (l- d 41 N2 fl2 - NA20A2 I

N?-N22  N I-NA2

{~g2 + + 2m(N 2fl2 -'NA2fl"42) 1211/2

N2 - kW 2 + m0l2 - w

NA - kWZ + mfl 42

and I,(kgr) and K,(kgr) are the modified Bessel functions of the first and second kind of order v. The

prime denotes the total derivative with respect to the arguments shown. We further consider the

present flow to be confined within two solid boundaries located at R, and R 2. The secular relation

obtained by applying the boundary conditions u2(RI) - u2(R 2) - 0 is

[ + 2m(N 2fl2 - NA2 + KjgI,(jjg) I(g)

[~ +2mN 2 2 - NA2 2 ) + ' Kj~cg) (78)2~
+[ 2m(N2f.z - NA2/ A2) + 29.1:(K29) (K278)

2 N? - IVA2 + K(g)' .,)
2m(N 2 12 - NA211A2) icjgK;Gcg) K

MT +?N~ + K, 6c g)

+a 2m(N 2fl2 - NA2flA2) + 2gK,(K2 ) 1,kg 0o
12 + 22 K,(.c2g) K k g

where

-MkR j-l, 2.

It is difficult to observe the general behavior of Eq. (78) because both the argument and the order of

the modified Bessel functions involve the complex eigenfrequency. However, stability behaviors for

some special cases can still be observed and compared with the earlier obtained criteria. One such cam

is the axisymmetric mode with zero axial magnetic field. The asymptotic expansion of the Semel func-

tions for Ule axial wave numbers allows us to obtain the explicit solution
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j(a, + 001l - w 11/
- k- 2 I + a2 r2/( 2 - R,€)2J

where

a-O, * 1, 2 ......

Equation (79) shows the flow will be stable if and only if

(a- 4) 0 -ofj 2  0. (80)

This is exactly what the generalized Michael condition predicts in Eq. (40). The stability domain is

plotted in Fig. 1. For axisymmetric modes, the presence of the azimuthal magnetic field stabilizes the

flow for negative density gradients and destabilizes the flow for positive density gradients.

Another special case is the one for azimuthal modes. The solution to Eq. (78) for k - 0 is found

to be

Cms = (o + h)(12 * /J + h) (enJ + hfnA2)¢,, -h (81)
m h

where

h - m 2  + ( + n ( R IR 2)

and a is an arbitrary integer. Because (o- + h) is always positive definite, the flow will be stable if

o .+m 4 1 ln(AR/R 2) ai' 2 ;0 0. (82)

Unlike the stability behavior in the axisymmetric case the angular AIfvdn velocity always stabilizes the

azimuthal disturbances. This conclusion is consistent with the stability characteristics predicted by Eq.

(51) for azimuthal modes. The stability boundaries described in Eq. (82) are plotted in Fig. 2. Due to

the presence of the azimuthal magnetic field, the flow can still be stable even when the density is

decreasing radially outwards. Another observable stability characteristic in the case of a muthal modes

is that the solution for unstable waves in Eq. (81) lies on the wn.circle as prescrbed by Eq. (73).

(2) Twe.Rlein Flow

The second flow profile we would lik to lwestigm Is ,a twwomlgotw *lWf ,lo A"

between the inner and outer region located at r - R. The flow disibutiom are as follows:
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w(r)- Wi
fI (r)- 11Aj j 1, 2

WA(r) - WA

po(r) - pj

where all the quantities with index j are constants. After matching the interfacial conditions in Eqs.

(23) and (24), the secular relation for stability is found to be:

1 - i,) + ( -0)
__- + Il21P1 2m(Nln, - NAI O ) + Kgt,(KgI) A

I P2 2m(N2i2- VA2 2) -g2K.(Kg2) + (i2 - Al2) VO (83)

N1- NA22--K +

where

f) A Jn ) J2 2j J 1
Nj - k P -+ mN 2 - N

NAj - kWj + mflj J - 1, 2

and

-kR.

If the axial Alfvin velocities are neglected and the perturbations are constmiam to be axiyvmetric,

the asymptotic expansion of the modified Bessel functions for large axial wave numbers allows us to

solve Eq. (83) and the resultant condition for stability is

. -L+ b(nj- n 2,) - p,(fl? - 2 (w,- W 2)
2 ) 0. (84)

This condition, composed of the centrifugal force jump and the axial velocity difference at the interface,

is consistent with Eq. (43) under the same assumption. The flow will be unstable if the centrifugal

* force at the interface is decreasing outwards. The axial velocity difference always destabilizes the flow

except for W, - W2. In that case, the generalized Michael condition in (40) is recovered as

p2(f1- fj 2) -h p( 1- 0j,) ) 0 (8S)
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for stability. As a matter of fact, condition (85) can easily be obtained by integrating Eq. (40) across

the interface, since the flow is stable within the inner and the outer regions.

Another solution we would like to obtain from Eq. (83) is one for the azimuthal modes. For

k - 0, Eq. (83) -yields a simple solution

(m - )p~tfl + (m + )p 2fl 2 :k (66c'M -m (p I + P2) (86)

where

- -(i 2 
- 'pP2(fI - l2 2 +" (P2- p) [(n - I)p Ila 2 + (m + I)p 2 flfl

+ m(p I + P2) 4( - 1)pl2 1 + (i + 1)p2022I. (87)

Stability of the flow will be guaranteed if

0 > 0. (88)

As in our previous discussion of Eq. (51) for azimuthal modes, the first term in Eq. (87) is the shear

influence generated by the difference in the angular velocities at the interface which always destabilizes

the flow. The second term represents the effect of the density variation in the centrifugal force field

created by the rotation of the fluids in the inner and outer regions. Stabilization effect requires the

density gradient at the interface to be positive. The last term in (87) is the effect of the azimuthal

magnetic field which always stabilize - the flow.

For instability, a semi-circle bound, if valid for the present profile, would read

1, + 2 + C21 !n2 f(89)

Substituting Eq. (86) into Eq. (89), we find that the above inequality will be satisfied if

(P2 - Pd)OA2 + [(M + l)P 2flA 2 + (m - A)plflJ ) 0. (90)
This satisfies the iestriction in Eq. (68) for the validity of a semi-circle bound. Equation (90) also indi-

cates that unstable waves will no longer be bounded by a semi-circle if the inequality is violated.

Unlike the semi-circle bound on all unstable waves in two dimensional stratified flows, the semi-circle

theorem in vortex flows does not in general provide a bound on unstable waves if the restriction in Eq.

(68) is violated.
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(3) Three-Regon Flow

As the last example to demonstrate the criteria previously derived for uniformly rotating flows

subject to azimuthal perturbations, we consider a three-region flow with constant angular velocity 00,

constant angular Alfvdn velocity fl A0, and a density distribution specified by

Pt 0~O < r < R,

po(r)in"P2j- R, < r <R 2
I°(r17 R 2 < r <

Here Pl, P2, P3 and o are constants that characterize the density profile in the three flow regions with

their common interfaces at the radial positions R, and R 2. The axial components of the velocity and

magnetic field in this case can be arbitrary. With the solutions for the velocity and pressure perturba-

tions given in Eqs. (76) and (77), we obtain, after using the matching conditions in (23) and (24), the

secular relation for stability as

-R-2 v+ R 2 v ( 9 1 )
a- 1 1 ' 2

mp1 + V2 + (P2 - p,)A + p2Y Mp 3 - P1 + (P3 - p)A -p2

where A is given in Eq. (72), v is given in Eq. (77), and p2 - p2(R2/R)' is the density of the middle

region evaluated at r - R 2. Two special cases for the present flow profile will be investigated.

The first special cases is for o- - 0, i.e., the fluid is homogeneous in the middle region. Equation

(91) yields

!L I - " 1 + ++I )A + m +0 (92)
PI P2 P PI PI P2J

where

R - RI'-A-M

There are four general types of density profiles for the flow under consideration. They are: (a)

P3 > P2 > PI, (b) p3 < P2 < pI, (C) P3 < P2 > Pl, and (d) P3 > P2 < PI. Combining Eq& (72) and

(92), we find that instabilities will occur when
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nlejyl + n(o1(Ix ±47-7le) < o for type (a)
wlyl - nfo(IxI t* -TiT) > o for type (b) (93)

and

Cl lyI + flo(IxI - 1 2+7IfI) > 0 for types (c) and (d)
where

y - 211 - ±1lI P
P1fP2J

and

I P1~ P2J4 P1j l P1 P2~
4~L- + IL +1 L [ 11-

Since the sums of the terms inside the radicals in Eq. (93) are always positive; we can immediately con-

clude from the conditions in Eq. (93) that the presence of the azimuthal magnetic field, as in our previ-

ous discussion of Eq. (51), always stabilizes the flow. It is obvious that the instability condition for

type (a) can never be satisfied, as also predicted by Eq. (51). since the density is increasing radially out-

wards. In the absence of the azmuthal magnetic field, the conditions in Eq. (93) reduce to those in

Fung (1982) and the flow is always unstable except for the density profile in type (a). It can also be

shown that for instability, all the unstable waves for the density profile in types (b), (c) and (d) lie on

the semi-circle described by Eq. (73).

The second special case we would like to examine is a continuously varying density distribution.

Equation (91) for p, " P2 and p 3 - P2 (Ru/R 2)' yields the simple form

(2m 2 + aA - 2mv)R2v - (2m 2 + onA + 2mv)Rj'. (94)

Equation (94) has the same form as the one (Eq. 22) in Fung & Kurzweg (1975) except for the terms

involving A and Y due to the presence of the magnetic field. A simple solution to Eq. (94) for v - 0

allows us to solve for the complex phase velocity as

(4m 2 + .2 + 4o)O 0 :t /(4m 2 + M2 + 4.) (4ofl + (4m 2 + a2) I 0J (95)
4m 2 + t"2
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Since the sum of the terms in the first bracket inside the radical is positive, we can again conclude the

azimuthal Aflvin velocity also stabilizes the flow. Furthermore, the complex phase velocity for

unstable waves in this case also lies on a semi-circle as predicted by Eq. (73).

CONCLUSIONS

Some general stability criteria for a general type of vortex flows of conducting fluids with axial

velocity components under the influence magnetic field are derived. Exact solutions to the governing

stability equation for some special flow profiles are obtained and compared with the earlier derived cri-

teria of a less general nature.

The derived sufficiency condition for stability is generally unseparable from the complex eigenfre-

quency because of the presence of the axial and the azimuthal magnetic field. To further investigate

the roles played by the density, velocity and magnetic field in flow stability, three types of perturbation

conditions are investigated and compared with the sufficiency condition. It was shown that densities

that increase radially outwards always have a stabilizing effect. Unlike the axial velocity which always

destabilizes the flow, the angular velocity plays a dual role in flow stability. While the gradient of the

velocity generates shear effects which destabilize the flow, the rotation of the velocity creates a centrifu-

gal force field which stabilizes or destabilizes the flow depending on the sign of the density gradient. If

perturbations to the flow are restricted to be azimuthal, the magnetic field, regardless of its detailed dis-

tribution, always stabilizes the flow.

Several bounds on unstable waves are also obtained and compared with some exact solutions to

the stability equation. For axisymmetric instabilities, a semi-ellipse theorem is proved to be valid in the

absence of the axial magnetic field. For azimuthal instabilities, an upper bound on the complex phase

velocity, reminiscent of the semi-ellipse theorem in the non-magnetic case, is derived with a restriction.

Such a restriction indicates, as supported by an exact solution to the stability equation, that not allj unstable waves are bounded by a semi-circle in the complex phase velocity plane. For flows with uni-

form rotations and constant Alfvdn velocities subiect to azimuthal perturbations, instabilities can only
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occur when the density decreases radially outwards. Furthermore, the phase velocity for such instabili-

ties, regardless of the detailed density distribution, must lie on a semi-circle in the complex velocity

plane. The semi-ellipse and semi-circle bounds derived for the azimuthal modes clearly show that the

amplifying waves do not necessarily propagate against the basic rotation. As a conclusion, therefore,

the westward drift derived for arbitrary nonaxisymmetric modes does not generally prevail in the

azimuthal case.
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